Large Language Models

(Natural Language) Reasoning in LLMs

ELL881 · AIL821

Sourish Dasgupta Assistant Professor, DA-IICT, Gandhinagar https://daiict.ac.in/faculty/sourish-dasgupta

Reasoning is hot and becoming hotter! - ACL 2024, Keynote

Table 1. Comparison and Combination of Descriptions about Reasoning from Philosophy and NLP

	What Is Reasoning	What Isn't Reasoning				
Dhilocophy	infer a new assertion from a set of assertions	sensation, perception, and feeling				
Finosophy	infer an action from goals and knowledge	direct recourse to sense perceptions or immediate experience				
NLD	more than understanding, slow thinking	memorize, look up, match information				
NLF	e.g., multi-hop OA, commonsense reasoning	e.g., text summarization, style transfer				
Combination	a dynamic process to integrate multiple know	ledge to get new conclusions,				
Combination	n rather than direct recourse to memorized or provided first-hand information					

THINKING, FAST AND SLOW

DANIEL KAHNEMAN

Natural Language Reasoning: A Survey; ACM Computing Survey, Col. 56, 2024

Three types of conclusions

	Premise	Conclusion	
Accortion	Cat is animal.	Cat can broatha	
Assertion	Animal can breathe.	Cat can breathe.	
	John was shot.		
Event	There are people around.	John will be sent to see a doctor.	
	Doctor can save life.		
	Marry is in the living room.	Co to the hadroom, take the remote control	
Action	Marry feels it is hot.	Go to the bedroom, take the remote control,	
	Remote control for air conditioner is in the bedroom.	come back, and turn on the air conditioned	

What does not count as reasoning (?)

	CoNLL	CommonGen	Natural Questions
Task	entity linking	generate a sentence describing a daily	open-domain QA
		scenario using the given concepts	
		(constrained text generation)	
Input example	They performed Kashmir, written by	dog, frisbee, catch, throw	Question: what color was john
	Page and Plant.		wilkes booth's hair? Context: He
			stood 5 feet 8 inches tall, had
			jet-black hair
Output example	Kashmir -> Kashmir (song); Page ->	A dog leaps to catch a thrown frisbee.	jet-black
	Jimmy Page; Plant -> Robert Plant		
Why not reasoning	Align known entities without	New text, but neither claim true	Claim "john wilkes booth's hair is
	producing new assertions, events, or	assertions or events nor generate	jet-black," but the knowledge is
	actions	actions	directly given in the context, without
			demand on knowledge integration

Entity linking too?

3 types of (neat) reasoning

Fact1: Aristotle is a human Rule: All humans will die

Fact2: Aristotle will die

Deduction	Abduction	Induction
$(Fact1 + Rule \rightarrow Fact2)$	$(Fact1 + Rule \leftarrow Fact2)$	$(Fact1 + Fact2 \rightarrow Rule)$

"Fact" denotes specific knowledge while "rule" denotes general principle.

Definition 2.9 (Abduction). An abductive inference is to infer probable knowledge, as the best explanation (i.e., cause), for the given knowledge (i.e., phenomena).

The 4th kind: "Defeasible" Reasoning

	Deductive Inference	Defeasible Inference
Conclusion	true	probably true
Inference relation	support	strengthen, weaken, rebut
Quality of inference	valid or invalid	weak to strong
Required knowledge	bounded	unbounded

(Good old) Natural Language Inferencing

	Premise	Hypothesis
Paraphrase	Two doctors perform surgery on patient	Doctors are performing surgery
CEU	Two women are embracing while helding to ge neckage.	Two women are holding packages
630	Two women are embracing while holding to-go packages	(Two women are embracing)
Reasoning	A soccer game with multiple males playing (Soccer is a sport)	Some men are playing a sport
The blue-colore premise.	d sentence is the implicit premise, while the orange-colored sen	tence is the other semantics of the

Reasoning?

Combination a dynamic process to integrate multiple knowledge to get new conclusions, rather than direct recourse to memorized or provided first-hand information

Special cases of all 4 kinds

Arithmetic Reasoning: (mostly) deductive

**Statistical Inference: (mostly) inductive

Commonsense Reasoning: (mostly) abductive , (many times) inductive

Spatial Reasoning:

Temporal Reasoning: deductive, inductive, abductive

A closer look at Statistical Inference as Reasoning

Level		Typical	Typical Questions	Examples	
(Symbol)		Activity			
1. Associati $P(y x)$	on	Seeing	What is? How would seeing <i>X</i> change my belief in <i>Y</i> ?	What does a symptom tell me about a disease? What does a survey tell us about the election results?	ML (w/o active RL)
2. Intervent $P(y do(x), z)$	tion :)	Doing Intervening	What if? What if I do X?	What if I take aspirin, will my headache be cured? What if we ban cigarettes?	AI Planners
3. Counterf $P(y_x x', y')$ JUDEA PEARL VIXAL OF THI FEIRO AND AND DANA MACKENZIE THE	actuals)	Imagining, Retrospection	Why? Was it X that caused Y? What if I had acted differently?	Was it the aspirin that stopped my headache? Would Kennedy be alive had Os- wald not shot him? What if I had not been smoking the past 2 years?	Structured Causal Models
BOOK OF Why					

THE NEW SCIENCE OF CAUSE AND EFFECT

The contenders ...

	Direction	Pros	Cons
End to End Bassoning		most officient	black box
End-to-End Reasoning	-	most enicient	bad generalization
Forward Pessoning	hattam un	interpretability	huge search space
Forward Reasoning	bottom-up	open-ended	only effective in LLMs
Baskward Passoning	ton down	interpretability	goal magifia
backward Reasoning	top-down	efficient	goal specific

How do they differ?

Forward Reasoning: CoT Prompting

Figure 1: Chain-of-thought prompting enables large language models to tackle complex arithmetic, commonsense, and symbolic reasoning tasks. Chain-of-thought reasoning processes are highlighted.

Math Word Problems (GSM8K)

Backward Reasoning: Backward Chaining

Entailer: Answering Questions with Faithful and Truthful Chains of Reasoning; EMNLP, 2022

Backward Reasoning: Backward Chaining

How do we know how good they are?

LLMs: (Natural Language) Reasoning

Standard Benchmark Tasks

ACM Computing Survey, Col. 56, 2024

Benchmark: Logical Reasoning

Dataset		Size	Data Source	Task	Remark		
bAbI-15 [172]		-	synthetic	inference	basic deduction		
RuleTaker† [25]/Proof	Writer† [150]	500k	synthetic	theorem proving	the first natural language theore	m proving	
PARARULE-Plus 5		400k	synthetic	theorem proving	addresses the depth imbalance is	ssue on Par	aRules
AAC [6]		710k	synthetic	inference	based on 8 syllogistic argument	schemes	
NLSat [127]		406k	synthetic	inference	natural language satisfiability pr	oblem	
Logiclaforence [10/]		2001-	and a disc	inference			
Logicinierence [106]		200K	synthetic	reasoning path generation	_		
FOLIO [50]		1.4k	expert-written	theorem proving	more diverse patterns		
LogiGLUE [95]		-	both	hybrid	a collection of many tasks		
				-	-		
† denotes there are gr	round reasor	ning p	aths.			Defeasi	ble Inference
† denotes there are gr	round reasor	ning p	aths.			Defeasi probably	ble Inference
† denotes there are gr	ound reasor	ning p	aths.	·		Defeasi probably strength	ble Inference y true en, weaken, rebut
† denotes there are gr Dataset	cound reason	ning pa	aths. Source	Task	Remark	Defeasi probably strength weak to	ble Inference y true nen, weaken, rebut
† denotes there are gr Dataset bAbI-16 [172]	cound reason Reasoning induction	ning pa Size	aths. Source synthetic	Task extraction	Remark induce-then-deduce	Defeasi probably strength weak to	ble Inference y true en, weaken, rebut strong
Dataset bAbI-16 [172] CLUTRR [145]	Reasoning induction induction	ning pa Size	source synthetic synthetic	Task extraction extractive QA	Remark induce-then-deduce induce-then-deduce	Defeasi probably strength weak to unbound	ble Inference y true een, weaken, rebut strong ded
Dataset bAbI-16 [172] CLUTRR [145] DEER [181]	Reasoning induction induction induction	Size	aths. Source synthetic synthetic Wikipedia	Task extraction extractive QA generation	Remark induce-then-deduce induce-then-deduce rule prediction	Defeasi probably strength weak to unbound	ble Inference y true nen, weaken, rebut strong ded
The set of th	Reasoning induction induction abduction	Size - - 1.2k -	aths. Source synthetic synthetic Wikipedia synthetic	Task extraction extractive QA generation generation	Remark induce-then-deduce induce-then-deduce rule prediction abduce from knowledge dat	Defeasi probably strength weak to unbound	ble Inference y true een, weaken, rebut strong ded
The second se	Reasoning induction induction abduction abduction	Size - - 1.2k - 17.8k	aths. Source synthetic synthetic Wikipedia synthetic ROCStories [10	Task extraction extractive QA generation generation 3 2-choice/generation	Remark induce-then-deduce induce-then-deduce rule prediction abduce from knowledge dat abduce from two premises	Defeasi probably strength weak to unbound tabase	ible Inference y true en, weaken, rebut strong ded
Dataset bAbI-16 [172] CLUTRR [145] DEER [181] AbductionRules [187] ART [7] defeasibleNLI [129]	Reasoning induction induction abduction abduction others	ning pr Size - 1.2k - 17.8k 43.8k	aths. Source synthetic synthetic Wikipedia synthetic ROCStories [10 other datasets	Task extraction extractive QA generation generation 3] 2-choice/generation classification/generation	Remark induce-then-deduce induce-then-deduce rule prediction abduce from knowledge dat abduce from two premises on concern the change of strem	Defeasi probably strength weak to unbound tabase	ible Inference y true een, weaken, rebut strong ded

Benchmark: (good old) NLI

Dataset	Domain	Size	P Source	H Source	Remark
SNLI [12]/e-SNLI† [18]	generic	570k	realistic	human-authored	the first large-scale NLI dataset
MultiNLI [173]	generic	433k	realistic	human-authored	cover more styles and topics
ANLI [104]	generic	162k	realistic	human-authored	collected via adversarial human-and-model-in-the-loop
OCNLI 58	generic	56k	realistic	human-authored	a large-scale Chinese dataset
XNLI [26]	generic	7.5k	-	-	cross-lingual, based on MultiNLI
SciTail [79]	science	27k	realistic	realistic	the first NLI dataset with entirely realistic data
SciNLI [131]	science	107k	realistic	realistic	-

"P" denotes "Premise" while "H" denotes "Hypothesis". † means that e-SNLI provides explanations for examples of SNLI.

Benchmark: Multihop QA

Dataset	Domain	Size	CS	QS	AT	Rationale
COMPLEXWEBQUESTIONS [152]	generic	34k	Web	human-rephrased	span	×
BREAK [174]	generic	83k	Wikipedia	human-composed	span	decomposition
WikiHop [171]	generic	51k	Wikipedia	synthetic	option	×
MedHop [171]	medicine	2.5k	Medline	synthetic	option	×
HotpotQA [182]	generic	112k	Wikipedia	semi-synthetic	span yes/no	sentences
R4C [67]	generic	4.6k	Wikipedia	semi-synthetic	span yes/no	triples
BeerQA [115]	generic	530	Wikipedia	human-authored	span yes/no	×
2WikiMultiHopQA [55]	generic	192k	Wikipedia	synthetic	span	sentences triples
MuSiQue [160]	generic	25k	Wikipedia	human-composed	span	paragraphs decomposition★
QASC [76]/eQASC† [69]	science	9.9k	WorldTree	human-authored	option	sentences reasoning path [69]★
StrategyQA [45]	generic	2.7k	Wikipedia	human-authored	yes/no	paragraphs decomposition★
† indicates it annotates the rationale f	for this data	aset. "C	S" denotes "	Context Source". "O	S" denot	es "Ouestion Source".

and "AT" denotes "Answer Type". In CS, the distractor setting is colored blue, while the retrieval setting is colored orange, and black means both. For rationale, \star means "reasoning path", otherwise "supporting evidence set". "decomposition" indicates the ground annotations of decomposed sub-questions.

Disconnected Question	Connected Question			
Armageddon in Retrospect was written by the author who was best known for what <u>1969 satire</u> novel? Slaughterhouse-Five	Armageddon in Retrospect was writter by the author who was best known for what novel? Q' Slaughterhouse-Five			
Who's the author of Armageddon in Retrospect? Q1 A1': Kurt Vonnegut	Who's the author of Armageddon in Retrospect? Q1' A1: Kurt Vonnegut			
best known for?	known for?			
Q2 A2': Slaughterhouse-Five	Q2' A2: Slaughterhouse-Five			

rt Vonnegut ... most famous for <u>satirical</u> novel Slaughterhouse-Five (<u>1969</u>) Jaroslav Hašek ... is best known for his novel "The Good Soldier Švejk". Harper Lee ... is best known for her novel "To Kill a Mockingbird"

HotpotQA vs MuSiQue

EMNLP, 2018 TACL, 2022

Benchmark: Commonsense Reasoning

Dataset Other Knowledge Knowledge Source Size Task Rationale OpenBookQA [100] science WorldTree 6k multi-choice QA science facts OpenCSR [87] science WorldTree, ARC corpus 20k free-form QA × CREAK [105] entity Wikipedia 13k claim verification explanation Question: Which of these would let the most heat travel through? A) a new pair of jeans. B) a steel spoon in a cafeteria. C) a cotton candy at a store. D) a calvin klein cotton hat. Science Fact: Metal is a thermal conductor. Common Knowledge: Steel is made of metal. Heat travels through a thermal conductor. Figure 1: An example for a question with a given set of choices and supporting facts. Figure 1: An example for a question with a given set of choices and supporting facts.									
OpenBookQA [100] science WorldTree 6k multi-choice QA science facts OpenCSR [87] science WorldTree, ARC corpus 20k free-form QA × CREAK [105] entity Wikipedia 13k claim verification explanation Question: Which of these would let the most heat travel through? A) a new pair of jeans. B) a steel spoon in a cafeteria. C) a cotton candy at a store. D) a calvin klein cotton hat. Science Fact: Metal is a thermal conductor. Common Knowledge: Steel is made of metal. Heat travels through a thermal conductor. Figure 1: An example for a question with a given set of choices and supporting facts.		Dataset		Other Knowledge	ther Knowledge Knowledge Source		Task	Rationale	
OpenCSR [87] science WorldTree, ARC corpus 20k free-form QA × CREAK [105] entity Wikipedia 13k claim verification explanation Question: Which of these would let the most heat travel through? A) a new pair of jeans. B) a steel spoon in a cafeteria. C) a cotton candy at a store. D) a calvin klein cotton hat. Science Fact: Metal is a thermal conductor. Common Knowledge: Steel is made of metal. Heat travels through a thermal conductor. Figure 1: An example for a question with a given set of choices and supporting facts. Figure set of choices and supporting facts.		OpenBoo	kQA [100]	science	WorldTree	6k	multi-choice QA	science facts	
CREAK 105 entity Wikipedia 13k claim verification explanation Question: Which of these would let the most heat travel through? A) a new pair of jeans. B) a steel spoon in a cafeteria. C) a color candy at a store. B) a steel spoon in a cafeteria. C) a color candy at a store. D) a calvin klein cotton hat. Science Fact: Metal is a thermal conductor. Common Knowledge: Steel is made of metal. Heat travels through a thermal conductor. Figure 1: An example for a question with a given set of choices and supporting facts.		OpenCSR [87] CREAK [105]		science	WorldTree, ARC corpus	20k	free-form QA	×	
Question: Which of these would let the most heat travel through? A) a new pair of jeans. B) a steel spoon in a cafeteria. C) a cotton candy at a store. D) a calvin klein cotton hat. Science Fact: Metal is a thermal conductor. Common Knowledge: Steel is made of metal. Heat travels through a thermal conductor. Figure 1: An example for a question with a given set of choices and supporting facts.				entity	Wikipedia	13k	claim verification	explanation	
	EM	NLP, 2018	Question: Which of th A) a new p B) a steel s C) a cottom D) a calvin Science Fa Metal is a t Common D Steel is ma Heat travel Figure 1: A of choices an	hese would let the most heat pair of jeans. spoon in a cafeteria. a candy at a store. a klein cotton hat. thermal conductor. Knowledge : de of metal. is through a thermal conductor An example for a questior nd supporting facts.	<u>travel</u> through? or. n with a given set				

What

ACM Computing Survey, Col. 56, 2024

Benchmark: Commonsense Reasoning

Dataset	Size	Direction	Context Source	Task	Remark				
ROCStories [103]	50k	temporal	human-authored	2-choice QA	-				
SWAG [192]	113k	temporal	ActivityNet, LSMDC	multi-choice QA	-	\square			
HellaSwag [193]	20k	temporal	ActivityNet, WikiHow	multi-choice QA	an upgraded SWAG				
COPA [128]	1k	both	human-authored	2-choice QA	-				
Social-IQA [142]	38k	both	human-authored	multi-choice QA	social situations	What			
e-CARE† [37]	21k	both	human-authored	2-choice QA	-				
WIQA [158]	40k	forward	ProPara [157]	multi-choice QA	about nature processes	Whv			
TIMETRAVEL [117]	29k	forward	ROCStories [103]	generation	counterfactual reasoning				
ART 7	20k	backward	ROCStories [103]	2-choice/generation	abductive commonsense reasoning				
TellMeWhy [82]	30k	backward	ROCStories [103]	free-form QA	each annotated 3 possible answers				
WikiWhy [†] 53	9k	backward	human-edited Wikipedia	free-form QA	about Wikipedia entities / events				
For direction, "both" indicates there are both forward and backward causal reasoning.									

A woman is outside with a bucket and a dog. The dog is running around trying to avoid a bath. She...

A. rinses the bucket off with soap and blow dry the dog's head. B. uses a hose to keep it from getting soapy.

C. gets the dog wet, then it runs away again.

D. gets into a bath tub with the dog.

ACL, 2019

Benchmark: Commonsense Reasoning

Dataset	Size	Context Source	Option Source	Task	Remark	
WikiHow Goal-Step [195]	1489k	WikiHow	automatically generated	multi-choice	goals, steps, and temporal ordering	How
PIQA [8]	21k	human-authored	human-authored	2-choice	physical causal reasoning	

AAAI, 2020

To separate egg whites from the yolk using a water bottle, you should...

a. Squeeze the water bottle and press it against the yolk. *Place* the water bottle and press it against the yolk. *Keep pushing,* which creates suction and lifts the yolk.

Benchmark: Commonsense Reasoning

	Size	Context Source	Question Source	Task	Remark
CSQA [153]	121	_	comi-cumthotic	multi-shoise OA	ConceptNet concepts [146]
CoS-E† [123]/ECQA† [1]	12K	-	semi-synthetic	muni-choice QA	explanation [1, 123], commonsense facts [1]
CSQA2 [155]	14k	-	human-authored	boolen QA	data construction via gamification
CosmosQA [62]	35k	blog [17]	human-authored	multi-choice QA	reading comprehension on blogs
Moral Stories [38]	12k	human-authored	-	classification/generation	situated reasoning with social norms

† indicates it annotates the rationale for the dataset.

Figure 1: An overview of our approach for data collection through gamification.

Mixed

Benchmark: Complex Reasoning

Task Dataset Size Domain Source AR-LSAT [202] law school admission test multi-choice QA 2klaw HEAD-QA [164] 6.7k healthcare specialized healthcare examination multi-choice QA AI2-ARC [24]/EntailmentBank[†] [31] 7.7k science grade-school standardized test multi-choice QA ReClor [190]/MetaLogic⁺ [64] standardized graduate admission examination RC + multi-choice QA 6k generic national civil servant examination of China 8k RC + multi-choice QA LogiQA [92] generic ConTRoL [90] 8k competitive selection and recruitment test passage-level NLI generic

. . .

† indicates "it annotates reasoning paths for some examples in this dataset".

MMLU, ICLR, 2021

BIG-BENCH, TMLR, 2021

Is reasoning reasonably reasoning?

ICLR, 2024

Does reason really exist? The reverse (inverse) tests

We hypothesize this ordering effect is due to the Reversal Curse. Models trained on "A is B" (e.g. "Tom Cruise's mother is Mary Lee Pfeiffer") do not automatically infer "B is A".

THE REVERSAL CURSE: LLMS TRAINED ON "A IS B" FAIL TO LEARN "B IS A": ICLR. 2024

Are LLMs smart enough to reason through *counterfactuals*?

The study introduces **counterfactual worlds** w^{cf} to explore model generalization. Instead of changing the input x, it changes the world model w.

This helps determine if the model's performance is specific to the default world w_{default} or applies generally to the task function f_w .

Counterfactuals as Variations:

- The goal is not to create counterfactual worlds beyond human experience but rather to explore **variations on the default conditions** of a task.
- These variations test how robust the model's reasoning and generalization are across different, yet reasonable, task scenarios.

Are LLMs smart enough to reason through *counterfactuals*?

Reasoning or Reciting? Exploring the Capabilities and Limitations of Language Models Through Counterfactual Task

Does commonsense exist? The "Alice-in-wonderland" tests

• The problem is based on simple logic and common-sense reasoning, with the structure:

Alice has N brothers and <u>she</u> also has M sisters. How many sisters does Alice's brother have?

- This problem, called the AIW problem, assumes that all siblings share the same parents.
- The correct response C is calculated by M+1, representing Alice and her sisters.

Model Failures:

- Even small variations in the numbers N and M caused substantial fluctuations in the correct response rates.
- Models often incorrectly tried to solve the problem by applying basic arithmetic operations to the numbers mentioned in the problem, leading to guesses or irrelevant calculations.

• AIW Variation 1: N=3, M=6, C=7

- AIW Variation 2: N=4, M=2, C=3
- AIW Variation 3: N=1, M=4, C=5
- AIW Variation 4: N=4, M=1, C=2

Alice in Wonderland: Simple Tasks Showing Complete Reasoning Breakdown in State-Of-the-Art Large Language Models

Does commonsense exist? The "Alice-in-wonderland" tests

Var.	Prompt	Туре
1	Alice has 3 brothers and she also has 6 sisters. How many sisters does Alice's brother have? Solve this problem and provide the final answer in following	STANDARD
	form: "### Answer: ".	
1	Alice has 3 brothers and she also has 6 sisters. How many sisters does Alice's	THINKING
	brother have? Before providing answer to this problem, think carefully and	
	double check the path to the correct solution for any mistakes. Provide then the	
21	final answer in following form: "### Answer: ".	
1	Alice has 3 brothers and she also has 6 sisters. How many sisters does Alice's	RESTRICTED
	brother have? To answer the question, DO NOT OUTPUT ANY TEXT EX-	
	CEPT following format that contains final answer: "### Answer: ".	

The "Alice-in-wonderland" tests: Correct Response Rate

Figure 2: Collapse of most SOTA LLMs on AIW problem. Models with non-zero AIW (main) and AIW+ (inlay) correct response rate (averaged across prompt variations with prompt types THINKING and STANDARD). Leading on AIW, GPT-40 collapses strongly on AIW+. Omitted models score 0.

Figure 3: Strong fluctuations across AIW problem variations. Also for higher performers, eg GPT-40, GPT-4 and Claude Opus 3, correct response rates vary strongly from close to 1 to close to 0, despite only slight changes introduced in AIW variations (a color per each variation 1-4). This clearly shows lack of model robustness, hinting basic reasoning deficits.

Are we benchmarking in the right way?

Figure 4: Failure of standardized benchmark MMLU to properly reflect and compare model basic reasoning capabilities as shown by strong discrepancy between AIW correct response rate vs MMLU average score. Many models, eg. Command R+, score 0 on AIW, but have high MMLU score.

Are we benchmarking in the right way?

Model	MMLU	Hellaswag	ARC-c	GSM8k	Correct resp. rate (AIW)	Correct resp. rate (AIW+)
gpt-4o-2024-05-13	0.89	-	-	-	0.65	0.02
claude-3-opus- 20240229	0.87	95.40	96.40	95.00	0.43	0.04
gpt-4-0613	0.86	95.30	96.30	92.00	0.37	0.04
llama-2-70b-chat	0.64	85.90	64.60	56.80	0.30	0.00
llama-2-7b-chat	0.55	77.10	43.20	25.40	0.13	0.00
dbrx-instruct	0.74	88.85	67.83	67.32	0.11	0.02
gpt-4-turbo-2024-04- 09	0.80	-	-	-	0.10	0.01

LLMs have to be told "she" means female ...

Larger-scale models like GPT-4 and Claude 3 Opus sometimes show correct reasoning but still fail on slight problem variations.

Models produce occasional correct answers, but the reasoning behind them is fragile and inconsistent.

Smaller Models Perform Worse:

- Older or smaller models, such as LLama 2 70B, show even worse performance, failing dramatically on AIW problems.
- The issue highlights the inadequacy of comparing models based on standardized benchmarks, which often do not reflect reasoning ability on real-world problems.

Are LLMs smart enough to *plan*?

- 1. Plan Generation Can the LLM come up with valid plans that will achieve a specific goal?
- Cost Optimal Planning Can the LLM come up with plans that are optimal to achieve a specific goal?
- 3. Plan Verification Can the LLM determine if a plan will successfully execute, and if not, can it explain why?
- 4. Reasoning about plan execution Can the LLM reason about what happens when a plan is executed?
- 5. Robustness to goal reformulation Can the LLM recognize the same goal when specified in different ways?
- 6. Ability to reuse plans Can the LLM recognize scenarios where it can reuse part or the whole of the original plan to achieve the new goal?
- 7. Replanning Can the LLM replan for cases where an unexpected change is reported?
- 8. Plan Generalization Can the LLM take specific plans, extract underlying procedural patterns and apply them to a new instance?

A quick peek into classical planning ...

Gripper task with four balls:

There is a robot that can move between two rooms and pick up or drop balls with either of his two arms. Initially, all balls and the robot are in the first room. We want the balls to be in the second room.

- **Objects:** The two rooms, four balls and two robot arms.
- Predicates: Is x a room? Is x a ball? Is ball x inside room y? Is robot arm x empty? [...]
- Initial state: All balls and the robot are in the first room. All robot arms are empty. [...]
- Goal specification: All balls must be in the second room.
- Actions/Operators: The robot can move between rooms, pick up a ball or drop a ball.

Source: https://www.cs.toronto.edu/~sheila/2542/s14/A1/introtopddl2.pdf

Specifications in PDDL

Goal specification:

```
at-ball(ball1, roomb), ..., at-ball(ball4, roomb) must be true.
Everything else we don't care about.
```

In PDDL:

(:goal (and (at-ball ball1 roomb)
 (at-ball ball2 roomb)
 (at-ball ball3 roomb)
 (at-ball ball4 roomb)))

Arxiv, 2024

A prompt for planning

I am playing with a set of blocks where I need to arrange the blocks into stacks. Here are the actions I can do

Pick up a block Unstack a block from on top of another block Put down a block Stack a block on top of another block

I have the following restrictions on my actions:

- I can only pick up or unstack one block at a time.
- I can only pick up or unstack a block if my hand is empty.
- I can only pick up a block if the block is on the table and the block is clear. A block is clear if the block has no other blocks on top of it and if the block is not picked up.

...

I can only stack a block on top of another block if I am holding the block being stacked.
I can only stack a block on top of another block if the block onto which I am stacking the block is clear.

Once I put down or stack a block, my hand becomes empty.

Once you stack a block on top of a second block, the second block is no longer clear.

[STATEMENT]

As initial conditions I have that, the red block is clear, the blue block is clear, the yellow block is clear, the hand is empty, the blue block is on top of the orange block, the red block is on the table, the orange block is on the table and the yellow block is on the table. My goal is to have that the orange block is on top of the blue block.

What is the plan to achieve my goal? Just give the actions in the plan.

Are LLMs smart enough to *plan*?

Domain	Shots	Claude M	Iodels	odels OpenAI GPT-4 Models					LLaMA Models		Gemini Models	
		Claude 3.5 (Sonnet)	Claude 3 (Opus)	GPT-40	GPT-40 -mini	GPT-4	GPT-4 Turbo	LLaMA 3.1 405B	LLaMA 3 70B	Gemini 1.5 Pro	Gemini 1 Pro	
Blocks	One	346/600	289/600	170/600	49/600	206/600	138/600	284/600	76/600	101/600	68/600	
world	Shot	(57.6%)	(48.1%)	(28.3%)	(8.1%)	(34.3%)	(23%)	(47.3%)	(12.6%)	(16.8%)	(11.3%)	
	Zero	329/600	356/600	213/600	53/600	210/600	241/600	376/600	205/600	143/600	3/600	
	Shot	(54.8%)	(59.3%)	(35.5%)	(8.8%)	(34.6%)	(40.1%)	(62.6%)	(34.16%)	(23.8%)	(0.5%)	
Mystery	One	19/600	8/600	5/600	0/600	26/600	5/600	21/600	15/600	-	2/500	
Blocks	Shot	(3.1%)	(1.3%)	(0.83%)	(0%)	(4.3%)	(0.83%)	(3.5%)	(2.5%)		(0.4%)	
world	Zero	0/600	0/600	0/600	0/600	1/600	1/600	5/600	0/600	_	0/500	
	Shot	(0%)	(0%)	(0%)	(0%)	(0.16%)	(0.16%)	(0.8%)	(0%)		(0%)	

Table 1: Performance on 600 instances from the Blocksworld and Mystery Blocksworld domains across large language models from different families, using both zero-shot and one-shot prompts. Best-in-class accuracies are bolded.

Are LLMs smart enough to *plan*?

Way forward: LLM as a Planning module (?)

LLMs Can't Plan, But Can Help Planning in LLM-Modulo Frameworks; ICML, 2024

Key takeaway:

"...On closer examination, many papers claiming LLMs have planning abilities wind up confusing general planning knowledge extracted from the LLMs for executable plans. When all we are looking for are abstract plans, such as "wedding plans," with no intention of actually executing them, it is easy to confuse them for complete executable plans."

Is reasoning even an NLP or an NLU problem?

Questions?

